Mathematical models

Command Palette

Search for a command to run...

Mathematical Models

Simulate tumor proliferation using validated mathematical models from literature

~50x Faster

Based on peer-reviewed research

Models implemented from: Jarrett et al. "Mathematical Models of Tumor Cell Proliferation: A Review of the Literature" Expert Rev Anticancer Ther. 2018;18(12):1271-1286

Growth Model Parameters
Configure tumor proliferation model
$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$

Density-dependent growth. Accounts for resource limitation.

Simulation Results
Configure parameters and run simulation
Mathematical Model Reference
Summary of implemented models from peer-reviewed literature
ModelEquationParametersApplication
Exponential$\frac{dN}{dt} = rN$$r$: growth rateEarly tumor growth
Logistic$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$r$, $K$: carrying capacityResource-limited growth
Gompertz$\frac{dN}{dt} = \lambda e^{-\alpha t} N$$\lambda$, $\alpha$Clinical tumor progression
Linear-Quadratic$S = e^{-\alpha D - \beta D^2}$$\alpha$, $\beta$, $D$Radiation response
Eichholtz-Wirth$SF = e^{-k \cdot t \cdot C}$$k$, $t$, $C$Chemotherapy cytotoxicity
de Pillis-Radunskaya$\frac{dT}{dt} = rT\left(1 - \frac{T}{K}\right) - kET$$r$, $K$, $k$, $s$, $d$Immune-tumor interaction
Reaction-Diffusion$\frac{\partial N}{\partial t} = D\nabla^2 N + rN\left(1 - \frac{N}{K}\right)$$D$, $r$, $K$Spatial tumor invasion
Mendoza-Juez$\frac{dP_o}{dt}, \frac{dP_g}{dt}$ with phenotype switching$\tau_o$, $\tau_g$, thresholdsMetabolic phenotype (Warburg)
Bellomo-Delitala (Kinetic)$\frac{\partial f_i}{\partial t} = \int \eta(u,u^*)f_i(u)f_j(u^*) - \mu_i(u)f_i \, du^*$$\eta$, $\mu$, activity statesTumor-immune with activity states
Kolev CTL Differentiation$\frac{\partial n}{\partial t} + \frac{\partial}{\partial u}(G(u)n) = P(u) - D(u)n$$G$, $P$, $D$CTL differentiation dynamics